通过在体控制释放来自壳聚糖微球体的NSC23766来抑制Rac1活性能够有效地改善骨关节炎进展

Inhibition of Rac1 activity by controlled release of NSC23766 from chitosan microspheres effectively ameliorates Osteoarthritis development in vivo
2015-03-16 08:00发表评论
作者:Zhu, S., Lu, P., Liu, H., Chen, P., Wu, Y., Wang, Y., Sun, H., Zhang, X., Xia, Q., Heng, B.C., Zhou, Y., Ouyang, H.W.
机构: 浙江大学医学院肝细胞和组织工程学中心
期刊: ANN RHEUM DIS2015年1月1期74卷

Background: Osteoarthritis (OA) is a degenerative joint disease characterised by cartilage degradation and chondrocyte hypertrophy. A recent study showed that Rac1 promoted expression of MMP13 and chondrocyte hypertrophy within the growth plate. These findings warrant further investigations on the roles of Rac1 in OA development and therapy in animal models.
Objective: To investigate the role and mechanistic pathway of Rac1 involvement in pathological changes of OA chondrocytes in vitro and OA development in vivo, as well as to develop a strategy of modulating Rac1 activity for OA treatment.
Material and methods: OA and normal cartilage from human or mice were used for immunohistochemical study and Rac1 activity assay. Chondrocytes treated with IL1β and the untreated control were subjected to the Rac1 activity assay. Chondrocytes transfected with CA-Rac1, DN-Rac1 or GFP were cultured under conditions for inducing calcification. To evaluate the effect of Rac1 in OA development, an OA model was created by anterior cruciate ligament transection in mice. CA-Rac1, DN-Rac1 and GFP lentivirus, or NSC23766, were injected intra-articularly. Joints were subjected to histological analysis.
Results: It was found that there is aberrant Rac1 activation in human OA cartilage. Rac1 activity could also be elevated by IL1β. Additionally, activated Rac1 promoted expression of MMP13, ADAMTS-5 and COLX by chondrocytes, partially through the β-catenin pathway. Moreover, activation of Rac1 in knee joints by CA-Rac1 lentivirus accelerated OA progression, while inhibition of Rac1 activity by DN-Rac1 lentivirus or Rac1 inhibitor NSC23766 delayed OA development. Therefore, we developed a strategy of controlled release of NSC23766 from chitosan microspheres to OA joints, which effectively protected cartilage from destruction.
Conclusions: These findings demonstrated that Rac1 activity is implicated in OA development. Also, controlled release of Rac1 inhibitor is a promising strategy for OA treatment.

通讯机构: Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, China
学科代码:风湿病学   关键词:释放;壳聚糖微球体;NSC23766;Rac1活性;骨关节炎 ,中国作者重要发表 爱思唯尔医学网, Elseviermed
来源: Scopus
Scopus介绍:Scopus 于2004年11月正式推出,是目前全球规模最大的文摘和引文数据库。Scopus涵盖了由5000多家出版商出版发行的科技、医学和社会科学方面的18,000多种期刊,其中同行评审期刊16,500多种。相对于其他单一的文摘索引数据库而言,Scopus的内容更加全面,学科更加广泛,特别是在获取欧洲及亚太地区的文献方面,用户可检索出更多的文献数量。通过Scopus,用户可以检索到1823年以来的近4000万条摘要和题录信息,以及1996年以来所引用的参考文献。数据每日更新。 马上访问Scopus网站http://www.scopus.com/
顶一下(0
您可能感兴趣的文章
    发表评论网友评论(0)
      发表评论
      登录后方可发表评论,点击此处登录