尽管获得了这些阶段性进展,mCRC的治疗仍需要取得更进一步的发展。目前的靶向治疗只是对估计的一小部分患者有效,且仅限于数周至数月的获益。虽然我们对CRC的分子生物学和遗传学的认识有了长足进步,但除了K-ras基因作为预测抗EGFR治疗的生物标志物以外,关于哪些患者可以通过某种细胞毒化疗药物/方案治疗,或可以给予贝伐珠单抗进行抗VEGF治疗,我们的认识仍然比较肤浅。本文阐述了mCRC靶向治疗的状况,概述已获得美国食品药品监督管理局(FDA)批准的生物制剂的临床作用和局限性,并讨论正在进行II期和III期临床试验的几个新型靶向治疗药物,以及靶向治疗模式可能面临的挑战。
肿瘤生物学的复杂多样是开发靶向治疗药物所面临的挑战。人们已日益认识到,获得最大临床获益需要靶向瘤体、肿瘤微环境、肿瘤血管以及正常组织血管。尽管靶向生物制剂的分子学效应在临床前研究中可能有明显的特征,但在实际临床应用中,确定其确切的治疗效果却很困难。明确何种情况下最适合靶向治疗,在药物研发过程中变得日益重要。但是,及时对于有特定生物标记物的肿瘤,替代途径代偿性扩增/激活,以及选择出无应答克隆,都会导致肿瘤耐药。因此,除非抑制住肿瘤生物学行为的关键性分子,否则针对某条信号通路的靶向治疗很可能只有短暂获益。虽然联合多种靶向治疗药物可以阻断多条信号通路,从而克服耐药,但如此也可能导致毒性增加。鉴于这种复杂的生物学行为,靶向治疗仍处于起步阶段。靶向药物要真正改善mCRC患者的整体转归,目前仍面临巨大的挑战。
虽然贝伐珠单抗最初是在2004年初被批准与静脉注射氟尿嘧啶为基础的方案联合使用,但围绕其使用仍然存在一些重要的概念问题。首先,如果贝伐珠单抗的确是靶向性药物,理论上应该存在可预测能从贝伐珠单抗治疗中获益的患者群体的某个或系列生物标记物。但经过深入的研究和努力,仍没有找到这样的生物标记物。其次,贝伐珠单抗单药治疗mCRC时,在降低瘤体体积方面临床活性小,其获益主要体现在与细胞毒化疗联合时。在最近的一项III期临床研究中,Tabernero等22发现,与更为剧烈的卡培他滨+奥沙利铂(XELOX)联合贝伐珠单抗相比,贝伐珠单抗单药维持治疗可能是mCRC患者一个合理的治疗选择。他们的研究表明,贝伐珠单抗可能确实有细胞毒效应,但需要更进一步的临床研究来确证。需要强调的是,此研究未设空白对照组,不能下结论认为贝伐珠单抗维持治疗优于不积极治疗。而且,XELOX方案维持化疗的患者获得了接近5个月的生存期改善。第三,在一线治疗中使用含贝伐珠单抗化疗后疾病仍然进展的患者,在更换化疗方案后是否仍需要使用贝伐珠单抗,这仍然是个问题。
参考文献
1. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin 2010;
60:277-300.
2. Comella P, Casaretti R, Sandomenico C, et al. Capecitabine, alone and in combination, in the management of patients with colorectal cancer: a review of the evidence. Drugs 2008; 68:949-61.
3. de Gramont A, Louvet C, Andre T, et al. A review of GERCOD trials of bimonthly
leucovorin plus 5-fluorouracil 48-h continuous infusion in advanced colorectal
cancer: evolution of a regimen. Groupe d’Etude et de Recherche sur les Cancers de
l’Ovaire et Digestifs (GERCOD). Eur J Cancer 1998; 34:619-26.
4. Capdevila J, Elez E, Peralta S, et al. Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev Anticancer Ther 2008; 8:1223-36.
5. Fuchs C, Mitchell EP, Hoff PM. Irinotecan in the treatment of colorectal cancer.
Cancer Treat Rev 2006; 32:491-503.
6. Blick SK, Scott LJ. Cetuximab: a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 2007; 67:2585-607.
7. Keating GM. Panitumumab: a review of its use in metastatic colorectal cancer.
Drugs 2010; 70:1059-78.
8. McCormack PL, Keam SJ. Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs 2008; 68:487-506.
9. Gallagher DJ, Kemeny N. Metastatic colorectal cancer: from improved survival to
potential cure. Oncology 2010; 78:237-48.
10. Poston GJ, Adam R, Alberts S, et al. OncoSurge: a strategy for improving resectability with curative intent in metastatic colorectal cancer. J Clin Oncol 2005; 23:7125-34.
11. Saif MW, Chu E. Biology of colorectal cancer. Cancer J 2010; 16:196-201.
12. Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers. J Clin
Oncol 2010; 28:4045-51.
13. Todaro M, Francipane MG, Medema JP, et al. Colon cancer stem cells: promise of
targeted therapy. Gastroenterology 2010; 138:2151-62.
14. Takahashi Y, Tucker SL, Kitadai Y, et al. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer. Arch Surg 1997; 132:541-6.
15. Ellis LM, Takahashi Y, Liu W, et al. Vascular endothelial growth factor in human
colon cancer: biology and therapeutic implications. Oncologist 2000; 5(suppl 1):
11-5.
16. Takahashi Y, Kitadai Y, Bucana CD, et al. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995; 55:3964-8.
17. Fan F, Wey JS, McCarty MF, et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 2005; 24:2647-53.
18. Epstein RJ. VEGF signaling inhibitors: more pro-apoptotic than anti-angiogenic.
Cancer Metastasis Rev 2007; 26:443-52.
19. Medical News Today Web site. Pfizer Discontinues Phase 3 Trial of Sutent in
Metastatic Colorectal Cancer. Available at: http://www.medicalnewstoday.com/
articles/156079.php. Accessed December 14, 2010.
20. AstraZeneca Web site. AstraZeneca Announces Results of Recentin HORIZON II
Phase III Trial in Metastatic Colorectal Cancer. Available at: http://www.astrazeneca.
com/Media/Press-releases/Article/20100528--AstraZeneca-Announces-Resultsof-
Recentin-HORIZON-II-. Accessed November 23, 2010.
21. Koehne C, Bajetta E, Lin E, et al. Results of an interim analysis of a multinational
randomized, double-blind, phase III study in patients (pts) with previously treated
metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK
222584 (PTK/ZK) or placebo (CONFIMR 2) [abstract]. J Clin Oncol 2006; 24(18
suppl):abstract 3508.
22. Tabernero J, Aranda E, Gomez A, et al. Phase III study of first-line XELOX plus
bevacizumab (BEV) for 6 cycles followed by XELOX plus BEV or single-agent (s/a)
BEV as maintenance therapy in patients (pts) with metastatic colorectal cancer
(mCRC): the MACRO Trial (Spanish Cooperative Group for the Treatment of
Digestive Tumors [TTD]) [abstract]. J Clin Oncol 2010; 28(15 suppl):abstract
3501.
23. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;
350:2335-42.
24. Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan
plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic
colorectal cancer: results from the BICC-C study. J Clin Oncol 2007; 25:4779-86.
25. Sobrero A, Ackland S, Clarke S, et al. Phase IV study of bevacizumab in combination with infusional fluorouracil, leucovorin and irinotecan (FOLFIRI) in first-line metastatic colorectal cancer. Oncology 2009; 77:113-9.
26. Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol 2009; 20:1842-7.
27. Kozloff M, Yood MU, Berlin J, et al. Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: the BRiTE observational cohort study. Oncologist 2009; 14:862-70.
28. Kopetz S, Hoff PM, Morris JS, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating
angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 2010;
28:453-9.
29. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a
randomized phase III study. J Clin Oncol 2008; 26:2013-9.
30. Stathopoulos GP, Batziou C, Trafalis D, et al. Chemotherapy with or without
bevacizumab in advanced colorectal cancer: a phase III trial. Presented at: the 35th
European Society for Medical Oncology (ESMO) Congress; October 8-12, 2010;
Milan, Italy. Abstract 606P.
31. de Gramont A, Buyse M, Abrahantes JC, et al. Reintroduction of oxaliplatin is
associated with improved survival in advanced colorectal cancer. J Clin Oncol 2007;
25:3224-9.
32. Gressett SM, Shah SR. Intricacies of bevacizumab-induced toxicities and their management. Ann Pharmacother 2009; 43:490-501.
33. Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with
breast cancer treated with bevacizumab, J Clin Oncol 2011; 29:632-8.
34. Veronese ML, O’Dwyer PJ. Monoclonal antibodies in the treatment of colorectal
cancer. Eur J Cancer 2004; 40:1292-301.
35. Zhang W, Gordon M, Lenz HJ. Novel approaches to treatment of advanced colorectal cancer with anti-EGFR monoclonal antibodies. Ann Med 2006; 38:545-51.
36. Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009; 283:125-34.
37. Clinicaltrials.gov [Website]. ASPECCT: a study of panitumumab efficacy and
safety compared to cetuximab in subjects with KRAS wild-type metastatic colorectal
cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT01001377?term_
NCT01001377&rank_1. Accessed November 30, 2010.
38. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007; 25:1658-64.
39. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl
J Med 2004; 351:337-45.
40. Souglakos J, Kalykaki A, Vamvakas L, et al. Phase II trial of capecitabine and
oxaliplatin (CAPOX) plus cetuximab in patients with metastatic colorectal cancer
who progressed after oxaliplatin-based chemotherapy. Ann Oncol 2007; 18:305-10.
41. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327:293-7.
42. De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D
mutation with outcome in patients with chemotherapy-refractory metastatic colorectal
cancer treated with cetuximab. JAMA 2010; 304:1812-20.
43. Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009; 27:663-71.
44. Markman B, Javier RF, Capdevila J, et al. EGFR and KRAS in colorectal cancer.
Adv Clin Chem 2010; 51:71-119.
45. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and
PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-
refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet
Oncol 2010; 11:753-62.
46. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial
treatment for metastatic colorectal cancer. N Engl J Med 2009; 360:1408-17.
47. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated
metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-705.
48. Maughan TS, Adams R, Smith CG.MRCCOIN Trial Investigators. Identification
of potentially responsive subsets when cetuximab is added to oxaliplatin–fluoropyrimidine chemotherapy (CT) in first-line advanced colorectal cancer (aCRC): mature results of the MRC COIN trial [abstract]. J Clin Oncol 2010; 28(15 suppl): abstract 3502.
49. Hasskarl J. Sorafenib. Recent Results Cancer Res 2010; 184:61-70.
50. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in
metastatic melanoma. N Engl J Med 2010; 363:809-19.
51. Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant
metastatic colorectal cancer. Clin Cancer Res 2010; 16:2921-6.
52. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27:672-80.
53. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in
metastatic colorectal cancer. N Engl J Med 2009; 360:563-72.
54. Clinicaltrials.gov [Website]. Cetuximab and/or bevacizumab combined with
combination chemotherapy in treating patients with metastatic colorectal cancer
(CALGB/SWOG 80405). Available at: http://clinicaltrials.gov/ct2/show/
NCT00265850?term_NCT00265850&rank_1. Accessed November 30, 2010.
55. Chu QS. Aflibercept (AVE0005): an alternative strategy for inhibiting tumour
angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 2009;
9:263-71.
56. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 2002; 99:11393-8.
57. Frischer JS, Huang J, Serur A, et al. Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol 2004; 25:549-53.
58. Fukasawa M, Korc M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004; 10:3327-32.
59. Huang J, Frischer JS, Serur A, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A 2003; 100:7785-90.
60. Kadenhe-Chiweshe A, Papa J, McCrudden KW, et al. Sustained VEGF blockade
results in microenvironmental sequestration of VEGF by tumors and persistent
VEGF receptor-2 activation. Mol Cancer Res 2008; 6:1-9.
61. Jin K, Shen Y, He K, et al. Aflibercept (VEGF Trap): one more double-edged sword of anti-VEGF therapy for cancer? Clin Transl Oncol 2010; 12:526-32.
62. Clinicaltrials.gov [Website]. Aflibercept versus placebo in combination with irinotecan and 5-FU in the treatment of patients with metastatic colorectal cancer after failure of an oxaliplatin based regimen (VELOUR). Available at: http://clinicaltrials.gov/ct2/show/ NCT00561470?term_NCT00561470&rank_1. Accessed November 30, 2010.
63. Clinicaltrials.gov [Website]. Study of aflibercept and modified folfox6 as first-line treatment in patients with metastatic colorectal cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT00851084?term_NCT00851084&rank_1. Accessed November 30,2010.
64. Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study
of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal
antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol
2010; 28:780-7.
65. Spratlin JL, Mulder KE, Mackey JR. Ramucirumab (IMC-1121B): a novel attack
on angiogenesis. Future Oncol 2010; 6:1085-94.
66. Clinicaltrials.gov [Website]. A study in second line metastatic colorectal cancer.
Available at: http://clinicaltrials.gov/ct2/results?term_NCT01183780. Accessed
December 13, 2010.
67. Clinicaltrials.gov [Website]. Irinotecan hydrochloride and cetuximab with or without ramucirumab in treating patients with advanced colorectal cancer with progressive disease after treatment with bevacizumab-containing chemotherapy. Available at: http://clinicaltrials.gov/ct2/show/NCT01079780?term_NCT01079780&rank_1. Accessed December 13, 2010.
68. Schwartz JD, Rowinsky EK, Youssoufian H, et al. Vascular endothelial growth
factor receptor-1 in human cancer: concise review and rationale for development of
IMC-18F1 (human antibody targeting vascular endothelial growth factor receptor-
1). Cancer 2010; 116(4 suppl):1027-32.
69. Clinicaltrials.gov [Website]. A study of IMC-1121B or IMC-18F1 in colorectal cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT01111604?term_NCT01111604& rank_1. Accessed November 30, 2010.
70. Kies MS, Blumenschein GR Jr, Christensen O, et al. Phase I study of regorafenib
(BAY 73-4506), an inhibitor of oncogenic and angiogenic kinases, administered
continuously in patients (pts) with advanced refractory non-small cell lung cancer
(NSCLC) [abstract]. J Clin Oncol 2010; 28(15 suppl):abstract 7585.
71. Shimizu T, Tolcher AW, Patnaik A, et al. Phase I dose-escalation study of continuously administered regorafenib (BAY 73-4506), an inhibitor of oncogenic and angiogenic kinases, in patients with advanced solid tumors [abstract]. J Clin Oncol
2010; 28(15 suppl):abstract 3035.
72. Clinicaltrials.gov [Website]. Patients with metastatic colorectal cancer treated
with regorafenib or placebo after failure of standard therapy. Available at: http://
clinicaltrials.gov/ct2/show/NCT01103323?term_NCT01103323&rank_1. Accessed
November 30, 2010.
73. Christensen O, Buechert M, Fasol U, et al. Analysis of plasma biomarkers, DCEMRI, and K-RAS mutations in patients with advanced colorectal carcinoma treated with the multikinase inhibitor regorafenib. Presented at: The 35th European Society for Medical Oncology (ESMO) Congress; October 8-12, 2010; Milan, Italy.
74. Jeffers M, Quinn DI, Joensuu H, et al. Identification of plasma biomarkers for the
multikinase inhibitor regorafenib (BAY 73-4506) in patients (pts) with renal cell
cancer (RCC). The 35th European Society for Medical Oncology (ESMO) Congress;
October 8-12, 2010.
75. Cai ZW, Zhang Y, Borzilleri RM, et al. Discovery of brivanib alaninate ((S)-((R)-
1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-
6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase
inhibitor (BMS-540215). J Med Chem 2008; 51:1976-80.
76. Huynh H, Ngo VC, Fargnoli J, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res 2008; 14:6146-53.
77. Ayers M. Comparison of a dual inhibitor of VEGF and FGF signaling, BMS-
582664, to the activity of bevacizumab, an inhibitor exclusively of VEGF signaling,
in xenograft models of colon carcinoma [abstract]. AACR Meeting Abstracts 2007;
April 2007:1618.
78. Garrett C, Siu L, El-Khoueiry A, et al. A phase I study of brivanib alaninate (BMS-582664), an oral dual inhibitor of VEGFR and FGFR tyrosine kinases, in combination with full dose cetuximab (BC) in patients (pts) with advanced gastrointestinal malignancies (AGM) who failed prior therapy [abstract]. J Clin Oncol 2008;26(15 suppl):abstract 4111.
79. Ayers M, Awad M, Malone D, et al. Association of K-ras status with efficacy end
points from a phase 1/2 study of brivanib in combination with cetuximab in patients
with advanced or metastatic colorectal cancer (CRC). Presented at: American Society
of Clinical Oncology Gastrointestinal Cancers (ASCO-GI) Symposium; January
15–17, 2009; San Francisco, CA. Abstract 375.
80. Park YS, El-Khoueiry A, Cubillo A, et al. A blinded placebo (P) controlled phase 1/2 dose escalation study (DES) of brivanib (B), an oral selective dual inhibitor of FGF and VEGF signaling, in combination with cetuximab (C) and irinotecan (I). Presented at: The 35th European Society for Medical Oncology (ESMO) Congress;
October 8-12, 2010; Milan, Italy.
81. Clinicaltrials.gov [Website]. Cetuximab with or without brivanib in treating patients with metastatic colorectal cancer. Available at: http://clinicaltrials.gov/ct2/
show/NCT00640471?term_NCT00640471&rank_1. Accessed November 30, 2010.
82. Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep
2009; 11:102-10.
83. Carnero A. The PKB/AKT pathway in cancer. Curr Pharm Des 2010; 16:34-44.
84. Clinicaltrials.gov [Website]. Placebo-controlled study of perifosine _ single agent
chemotherapy for metastatic cancer patients. Available at: http://clinicaltrials.gov/
ct2/show/NCT00398879?term_NCT00398879&rank_1. Accessed December 13, 2010.
85. Vukelja S, Richards D, Campos LT, et al. Randomized phase II study of perifosine in combination with capecitabine versus capecitabine alone in patients with secondor third-line metastatic colon cancer. [abstract]. J Clin Oncol 2009; 27(15 suppl): abstract 4081.
86. Clinicaltrials.gov [Website]. Perifosine plus capecitabine versus placebo plus capecitabine in patients with refractory advanced colorectal cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT01097018?term_NCT01097018&rank_1. Accessed November 30, 2010.
87. Dierks C. GDC-0449--targeting the hedgehog signaling pathway. Recent Results
Cancer Res 2010; 184:235-8.
88. Van Cutsem E, Eng C, Tabernero J, et al. A randomized phase I/II trial of AMG102 or AMG 479 in combination with panitumumab (pmab) compared with pmab alone in patients with wild-type (WT) KRAS metastatic colorectal cancer (mCRC): safety and efficacy results. J Clin Oncol 2011; 29 (suppl 4);abstract 366.
89. Barker AD, Sigman CC, Kelloff GJ, et al. I-SPY 2: an adaptive breast cancer trial
design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009;86:97-100.
90. Printz C. BATTLE to personalize lung cancer treatment. Novel clinical trial design and tissue gathering procedures drive biomarker discovery. Cancer 2010; 116:
3307-8.