缺氧诱导的甲基化降低新生大鼠支气管肺发育异常模型中的RUNX3水平

Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia
2015-08-27 09:27点击:122次发表评论
作者:Zhu, Y. , Fu, J. , Yang, H. , Pan, Y. , Yao, L. , Xue, X.
机构: 中国医科大学盛京医院儿科
期刊: RESP RES2015年6月1期16卷

Background: Bronchopulmonary dysplasia (BPD) in premature infants is a predominantly secondary occurrence to intrauterine inflammation/infection and postpartum mechanical ventilation; in recent years, an association with epigenetics has also been found. DNA methylation, catalyzed by DNA methyl transferases (DNMTs), and tri-methylation of lysine 27 on histone H3 (H3K27me3), mediated by the methyltransferase, Enhancer of Zeste Homolog 2 (EZH2), are some of the most commonly found modifications in epigenetics. Runt-related transcription factor 3 (RUNX3) is associated with pulmonary epithelial and vascular development and regulates expression at the post-transcriptional level by DNA methylation through DNMT1 or DNMT3b. However, the involvements of these epigenetic factors in the occurrence of BPD are, as yet, unclear. Methods: Newborn rats were randomly assigned to a model, hyperoxia (85 % O2) or control, normoxia group (21 % O2). Lung tissues and alveolar type 2 (AT2) epithelial cells were collected between 1-14 days. The expression of DNMTs, and EZH2 was detected by immunohistochemistry, Western blot and real-time PCR. The percentage of DNA methylation and H3K27me3 levels in the RUNX3 promoter region was measured by bisulfite sequencing PCR and chromatin immunoprecipitation assay. RUNX3 protein and mRNA expression in AT2 cells was also measured after inhibition using the DNA methylation inhibitor, 5-Aza-2'-deoxycytidine, the H3K27me3 inhibitor, JMJD3, and the EZH2 inhibitor, DZNep. Results: Compared with the control group, RUNX3 protein was downregulated and DNMT3b and EZH2 were highly expressed in lung tissues and AT2 cells of the model group (P < 0.05), while high DNA methylation and H3K27me3 modifications were present in the RUNX3 promoter region, in lung tissues of the model group (P < 0.05). Following hyperoxia in the model group, JMJD3 and DZNep significantly reversed the hyperoxia-induced down-regulation of RUNX3 expression in AT2 cells (P < 0.05), more so than 5-Aza-2'-deoxycytidine (P < 0.05). Conclusions: 1) DNA methylation and H3K27 trimethylation are present in the BPD model; 2) RUNX3 down-regulation is attributed to both DNMT3b-catalyzed DNA methylation and EZH2-catalyzed histone methylation. © 2015 Zhu et al.

 

通讯机构:Shengjing Hospital of China Medical University, Department of Pediatrics, Shenyang, China
学科代码:呼吸病学   关键词:缺氧 甲基化 新生大鼠 支气管肺发育异常 ,中国作者重要发表 爱思唯尔医学网, Elseviermed
来源: Scopus
Scopus介绍:Scopus 于2004年11月正式推出,是目前全球规模最大的文摘和引文数据库。Scopus涵盖了由5000多家出版商出版发行的科技、医学和社会科学方面的18,000多种期刊,其中同行评审期刊16,500多种。相对于其他单一的文摘索引数据库而言,Scopus的内容更加全面,学科更加广泛,特别是在获取欧洲及亚太地区的文献方面,用户可检索出更多的文献数量。通过Scopus,用户可以检索到1823年以来的近4000万条摘要和题录信息,以及1996年以来所引用的参考文献。数据每日更新。 马上访问Scopus网站http://www.scopus.com/
顶一下(0
您可能感兴趣的文章
    发表评论网友评论(0)
      发表评论
      登录后方可发表评论,点击此处登录